
Indy Autonomous Challenge 
 
Our lab has been working in the field of autonomous driving for the past 20 years. At 
Berkeley, we have been developing control algorithms for different driving conditions, e.g., 
drifting maneuver on ice, autonomous lane changes, automated parallel and reverse parking, 
etc. All of our algorithms have been tested and validated on our full-size vehicles. 
Furthermore, in the past five years we have also developed the Berkeley Autonomous Race 
Car (BARC) platform, which is a 1/10-scale vehicle equipped with a suite of sensors (website 
http://www.barc-project.com/). The project is open source and it is used for both teaching 
and for research purposes. 
 
Autonomous racing is an active area of research in our lab. The following list details our 
expertise and partnership interests: 
 

● Iterative Learning Model Predictive Control: We developed a control strategy which 
guarantees safety and performance improvement of an autonomous vehicle which 
runs on a race track. We have attached the paper which shows that the proposed 
algorithm is able to teach an autonomous vehicle how to race 

 
● Experimental Testing: We have been testing our algorithms both on small size and 

full size autonomous vehicles the videos can be found at:  
1. https://youtu.be/ZBFJWtIbtMo 
2. https://youtu.be/MKxz3EnXOLg 
3. https://youtu.be/W4LkQaTvzhI 
4. https://youtu.be/pB2pTedXLpI 

 
● Partnership Interests: We would like to join efforts with a team that has a strong 

background in localization and estimation using camera and LIDAR 
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Learning How to Autonomously Race a Car: A Predictive Control Approach

Ugo Rosolia and Francesco Borrelli

Abstract— We present a learning model predictive controller
(LMPC) for autonomous racing. We model the autonomous
racing problem as a minimum time iterative control task, where
an iteration corresponds to a lap. The system trajectory and input
sequence of each lap are stored and used to systematically update
the controller for the next lap. In the proposed approach, the race
time does not increase at each iteration. The first contribution
is to propose a local LMPC which reduces the computational
burden associated with existing LMPC strategies. In particular,
we show how to construct a local safe set and approximation to
the value function, using a subset of the stored data. The second
contribution is to present a system identification strategy for
the autonomous racing iterative control task. We use data
from previous iterations and the vehicle’s kinematic equations
of motion to build an affine time-varying prediction model.
The effectiveness of the proposed strategy is demonstrated by
experimental results on the Berkeley Autonomous Race Car
(BARC) platform.

Index Terms— Autonomous racing, autonomous vehicles,
iterative learning control, model predictive control (MPC),
predictive control, real-time optimization, system identification.

I. INTRODUCTION

AUTONOMOUS driving is an active research field. Over
the past decades, several techniques have been proposed

for different driving scenarios [1]–[9]. Depending on the
control task (i.e., highway driving, urban driving, emergency
maneuvers), the behavior of the vehicle can be modeled with
linear or nonlinear equations of motions [10], [11]. When the
nonlinearities of the vehicle are excited, the control task is
inevitably more challenging. In this work, we are interested
in designing a controller for autonomous racing which can
operate the vehicle in the nonlinear regime, close to the
limit of the vehicle’s handling capability. We formulate the
autonomous racing problem as an iterative control task, where
at each iteration the controller drives the vehicle around the
track trying to minimize the lap time.

Recently, several approaches have been proposed for
autonomous racing. In [12], the authors reformulated the
autonomous racing control task as a non-convex optimization
problem and then proposed a linearization strategy to compute
approximate solution. Verschueren et al. [13] proposed a
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nonlinear model predictive control (NMPC) strategy which
exploits a Pacejka tire model identified from experimental
data. The NMPC is implemented on an experimental setup
using an exact Hessian sequential quadratic programm (SQP)-
type optimization algorithm. NMPC strategies for autonomous
racing are tested also in [14], where the authors compared two
control methodologies based on different parametrizations of
the vehicle’s model. A model predictive contouring control
(MPCC) was presented in [15]. In MPCC, the controller
objective is a tradeoff between the progress along the track
and the contouring error. First, a high-level MPC computes the
optimal racing trajectory. Afterward, a low-level controller is
used to track the optimal racing line. This strategy is extended
in [16] to design a racing controller that guarantees recursive
constraint satisfaction. Also in [17], the control problem is
divided into two steps. First, a reference trajectory is computed
using the method proposed in [18]. Afterward, an iterative
learning control (ILC) approach is used for tracking. The
authors showed the effectiveness of the proposed approach
by experimental testing on a full-size vehicle. We proposed
to reformulate the autonomous racing problem as an iterative
control task. The controller is not based on a precomputed
racing line and it learns from experiencing a trajectory which
minimizes the lap time. In particular, the closed-loop trajecto-
ries at each lap are stored and used to systematically update
the controller for the next lap. This brief builds on [19]–[21]
and has two main contributions.

The first contribution is to propose a local learning model
predictive controller (LMPC) strategy where the terminal cost
and constraint are updated at each time step. In particular,
at each time t , we exploit the planned trajectory at time t − 1
to construct a local terminal cost and constraint. In contrast to
our previous works [19]–[21], the terminal cost and constraint
are computed using a subset of the stored data; therefore,
the proposed local LMPC enables the reduction of the com-
putational burden associated with existing LMPC strategies.
The effectiveness of the proposed approach is demonstrated
on the Berkeley Autonomous Race Car (BARC)1 platform.
We show that the proposed controller is able to improve the
lap time, until it converges to a steady-state behavior. Finally,
we analyze the lateral acceleration acting on the closed-loop
system and we confirm that the controller learns to drive the
vehicle at the limit of its handling capability.

The second contribution of this work is to propose a system
identification strategy tailored to the autonomous racing appli-
cation. We propose to exploit both the kinematic equations of
motion and data from previous iterations to identify an affine

1A video of the experiment can be found at https://youtu.be/ZBFJWtIbtMo
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Fig. 1. Representation of the vehicle’s position in the curvilinear reference
frame.

time-varying (ATV) prediction model used for control. In par-
ticular, we use a local linear regressor to learn the relationships
between the inputs and the vehicle’s velocities. Furthermore,
we linearize the kinematic equations of motion to approximate
the evolution of the vehicle’s position as a function of the
velocities. In contrast to our previous works [19], [20], this
strategy allows us to reformulate the LMPC as a quadratic
program (QP) which can be solved efficiently.

This brief is organized as follows: in Section II, we intro-
duce the problem formulation. Section III illustrates the LMPC
design. In particular, it shows how to construct local safe
sets and value function approximations using a subset of the
collected data. Section IV illustrates the system identifica-
tion strategy used in the experiments. Finally, in Section V
we present the experimental results on the BARC platform.
Section VIII provides final remarks.

II. PROBLEM FORMULATION

Consider the following state and input vectors:

x = [
vx , vy, wz, eψ , s, ey

]⊤ and u = [
δ, a

]⊤

where wz, vx , vy, are the vehicle’s yaw rate, longitudinal and
lateral velocities. The position of the vehicle is represented in
the curvilinear reference frame [22], where s is the distance
traveled along the centerline of the track. The states eψ and
ey are the heading angle and lateral distance error between
the vehicle and the centerline of the track, as shown in Fig. 1.
Finally, δ and a are the steering and acceleration commands.
The vehicle is described by the dynamic bicycle model

xt+1 = f (xt , ut ) (1)

where f (·, ·) is derived from kinematics and balancing the
forces acting on the tires [10]. A detailed expression can be
found in [10, Ch. 2]. Note that in the curvilinear reference
frame state and input constraints are convex, that is

xt ∈ X = {x ∈ Rn : Fx x ≤ bx}
ut ∈ U = {u ∈ Rd : Fuu ≤ bu} ∀t ≥ 0.

The goal of the controller is to drive the system from the
starting point xS to the terminal set XF . More formally,
the controller aims to solve the following minimum time
optimal control problem:

min
T ,u0,...,uT −1

T −1∑

t=0

1

s.t. xt+1 = f (xt , ut ) ∀t = [0, . . . , T − 1]
xt ∈ X , ut ∈ U ∀t = [0, . . . , T ]
xT = XF , x0 = xS (2)

where for a track of length L the terminal set

XF = {x ∈ Rn : [0 0 0 0 1 0]x = s ≥ L} (3)

represents the states beyond the finish line.

III. CONTROLLER DESIGN

In this section, we first show how to use historical data to
construct a terminal constraint set and terminal cost function.
Afterward, we exploit these quantities to design the controller.

A. Stored Data

As stated in Section I, we define one iteration as a suc-
cessful lap around the race track and we store the closed-loop
trajectories. In particular, at the j th iteration we define the
vectors

u j =
[
u j

0, . . . , u j
T j

]

x j =
[
x j

0 , . . . , x j
T j

]
(4)

which collect the evolution of closed-loop system and associ-
ated input sequence. In the above definitions, T j denotes the
time at which the closed-loop system reached the terminal set,
i.e., xT j ∈ XF .

B. Local Convex Safe Set

In this section, we define the local convex safe set. Different
from our previous works [19]–[21], this quantity is constructed
using a subset of the stored data points. In particular, the local
convex safe set around x is defined as the convex hull of the
K -nearest neighbors to x .

First, for the j th trajectory we define the set of time indices
[t j,∗

1 , . . . , t j,∗
K ] associated with the K -nearest neighbors to the

point x

[
t j,∗
1 , . . . , t j,∗

K

]
= argmin

t1,...,tK

K∑

i=1

∣∣∣∣x j
ti − x

∣∣∣∣2
D

s.t. ti ̸= tk ∀i ̸= k

ti ∈{0, . . . , T j } ∀i ∈{1, . . . , K }.
(5)

In the above definition ||y||2D = y⊤D⊤ Dy for the user-defined
matrix D, which may be chosen to take into account the
relative scaling or relevance of different variables. We chose
D = diag(0, 0, 0, 0, 1, 0) to select the K -nearest neighbors
with respect to the curvilinear abscissa s, which represents a
proxy for the distance between two stored data points of the
same lap. Furthermore, as the vehicle moves forward on the
track, at each lap the stored data are ordered with respect to the
traveled distance s and the computation of (5) is simplified.
The K -nearest neighbors to x from the lth to the j th iteration
are collected in the following matrix:

D j
l (x) =

[
xl

t l,∗
1

, . . . , xl
t l,∗
K

, . . . , x j

t j,∗
1

, . . . , x j

t j,∗
K

]

which is used to define the local convex safe set around x

CL j
l (x) = {

x̄ ∈ Rn : ∃λ ∈ RK ( j−l+1),

λ ≥ 0, 1λ = 1, D j
l (x)λ = x̄

}
. (6)
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Note that the above local convex safe set CL j
l (x) represents

the convex hull of the K -nearest neighbors to x from the
lth to j th iteration.

Finally, we define the matrix

S j
l (x) = [

xl
t l,∗
1 +1

, . . . , xl
t l,∗
K +1

, . . . , x j

t j,∗
1 +1

, . . . , x j

t j,∗
K +1

]

which collects the evolution of the states stored in the columns
of the matrix D j

l (x). The above matrix S j
l (x) will be used in

Section III-D to construct the local convex safe set at each
time step.

C. Local Convex Q-Function

In this section, we exploit the stored data to construct an
approximation to the cost-to-go over the local convex safe
set CL j

l (x) around x . In particular, we define the local convex
Q-function around x as the convex combination of the cost
associated with the stored trajectories

Q j
l (x̄, x) = min

λ
J j

l (x)λ

s.t λ ≥ 0, 1λ = 1, D j
l (x)λ = x̄

(7)

where λ ∈ RK ( j−l), 1 is a row vector of ones and the row
vector

J j
l (x) = [

J l
t l,∗
1 →T l

(
xl

t l,∗
1

)
, . . . , J l

t l,∗
M →T l

(
xl

t l,∗
M

)
, . . . ,

J j

t j,∗
1 →T j

(
x j

t j,∗
1

)
, . . . , J j

t j,∗
M →T j

(
x j

t j,∗
M

)]

collects the cost-to-go associated with the K -nearest neigh-
bors to x from the lth to the j th iteration. The cost-to-go
J j

t→T j (x j
t ) = T j − t represents the time to drive the vehicle

from x j
t to the finish line along the j th trajectory. We under-

line that the cost-to-go is computed after completion of the
j th iteration.

D. Local LMPC Design

The local convex safe set and the local convex Q-function
are used to design the controller. At each time t of the
j th iteration, the controller solves the following finite-time
optimal control problem:

J LMPC, j
t→t+N

(
x j

t , z j
t
)

= min
U j

t ,λ
j
t

[
t+N−1∑

k=t

h
(
x j

k|t
)
+ J j−1

l

(
z j

t
)
λ

j
t

]

(8a)

s.t. x j
t |t = x j

t (8b)

λ
j
t ≥ 0, 1λ

j
t = 1, D j−1

l

(
z j

t
)
λ

j
t = x j

t+N |t (8c)

x j
k+1|t = A j

k|t x j
k|t + B j

k|t u
j
k|t + C j

k|t (8d)

x j
k|t ∈ X , u j

k|t ∈ U (8e)

∀k = t, . . . , t + N − 1

where U j
t = [u j

t |t , . . . , u j
t+N−1|t ] ∈ Rd×N , λ

j
t ∈ R( j−l+1)K

and the stage cost in (8a)

h(x) =
{

1, If x /∈ XF

0, Else.

In the above finite time optimal control problem (FTOCP)
equations (8b), (8d), and (8e) represent the dynamic update,
state, and input constraints. Finally, (8c) enforces x j

t+N |t into
the local convex safe set defined in Section III-B. The optimal
solution to (8) at time t of the j th iteration

λ
j,∗
t ,

[
x j,∗

t |t , . . . , x j,∗
t+N |t

]
and U j,∗

t = [
u j,∗

t |t , . . . , u j,∗
t+N−1|t

]
(9)

is used to compute the following vector:

z j
t =

{
x j−1

N , If t = 0
S j

l

(
z j

t−1

)
λ

j,∗
t−1, Otherwise

(10)

which at time t defines the local convex safe set LS j
l (z j

t )

and local Q-function Q j
l (x, z j

t ) in (8). The above vector z j
t

represents a candidate terminal state for the planned trajectory
of the LMPC at time t . First, we initialize the candidate
terminal state z j

0 using the ( j − 1)th trajectory. Afterward,
we update the vector z j

t as the convex combination of the
columns of the matrix S j

l (z j
t ) from Section III-B. Note that

if the system is linear or if a linearized system approximates
the nonlinear dynamics over the local convex safe set, then
there exists a feasible input which drives the system from
x j,∗

t+N |t = D j−1
t (z j

t )λ
j,∗
t to z j

t+1 = S j−1
l (z j

t )λ
j,∗
t .

Finally, we apply to system (1) the first element of the
optimizer vector

u j
t = u j,∗

t |t . (11)

The FTOCP (8) is repeated at time t + 1, based on the new
state xt+1|t+1 = x j

t+1.

IV. SYSTEM IDENTIFICATION STRATEGY

In this section, we illustrate the system identification strat-
egy used to build an ATV model which approximates the
vehicle dynamics. First, we introduce the kinematic equations
of motion which describe the evolution of the vehicle’s posi-
tion as a function of the velocities. Afterward, we present
the strategy used to approximate the dynamic equations of
motion, which model the evolution of the vehicle’s velocities
as a function of the input commands. Finally, we describe the
ATV model, which is computed online linearizing the kine-
matic equations of motion and evaluating the approximate
dynamic equations of motion along the shifted optimal solu-
tion to the LMPC.

A. Kinematic Model

As mentioned in Section II, the position of the vehicle is
expressed in the Frenet reference frame [22]. In particular,
we describe the position of the vehicle in terms of lateral
distance ey from the centerline of the road and distance s
traveled along a predefined path (see Fig. 1). The state eψ
represents the difference between the vehicle’s heading angle
and the angle of the tangent vector to the path at the curvilinear
abscissa s.

The rate of change of the vehicle’s position in the curvilin-
ear reference frame is described by the following kinematic
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relationships:

ėψ = wz − vx cos(eψ ) − vy sin(eψ )

1 − κ(s)ey
κ(s)

ṡ = vx cos(eψ ) − vy sin(eψ )

1 − κ(s)ey

ėy = vx sin(eψ ) + vy cos(eψ )

where κ(s) is the curvature of the centerline of the track at the
curvilinear abscissa s [22]. The above equations can be Euler
discretized to approximate the vehicle’s motion as a function
of the vehicle’s velocities

eψk+1 = feψ (xk) = eψk

+ dt
(

wzk − vxk cos(eψk ) − vyk sin(eψk )

1 − κ(sk)eyk

κ(sk)

)

sk+1 = fs(xk) = sk + dt
(

vxk cos(eψk ) − vyk sin(eψk )

1 − κ(sk)eyk

)

ėy = fey (xk) = eyk + dt (vxk sin(eψk ) + vyk cos(eψk ))

(12)

where dt is the discretization time. The above equations will
be linearized to compute an ATV prediction model. It is
interesting to note that (12) are independent of the vehicle’s
physical parameters, because these are derived from kinematic
relationships between velocities and position.

B. Dynamic Model

The dynamic equations of motion, which describe the evo-
lution of the vehicle’s velocities, may be computed balancing
the forces acting on the tires [10]. Therefore, the dynamic
equations depend on physical parameters associated with the
vehicle, tires and asphalt. These parameters may be estimated
through a system identification campaign. However, the non-
linear dynamic equations of motion should be linearized in
order to obtain an ATV model which allows us to reformulate
the LMPC as a QP. Instead of identifying the parameters of a
nonlinear model and then linearize it, we propose to directly
learn a linear model around x using a local linear regressor.
We introduce the Epanechnikov kernel function [23]

K (u) =

⎧
⎨

⎩

3
4
(1 − u2), for |u| < 1

0, else

which is used to compute a local linear model around x for
the longitudinal and lateral dynamics. In particular, for l =
{vx , vy, wz} we compute the following regressor vector:

$l(x) = argmin
$

∑

{k, j }∈I (x)

K

⎛

⎝
∣∣∣∣x − x j

k

∣∣∣∣2
Q

h

⎞

⎠ y j,l
k ($) (13)

where the hyperparameter h ∈ R+ is the bandwidth, the row
vector $ ∈ R5,

y j,vx
k ($) =

∣∣∣∣v j
xk+1 − $

[
v j

xk , v j
yk , w j

zk , a j
k , 1

]T ∣∣∣∣

y
j,vy
k ($) =

∣∣∣∣v j
yk+1 − $

[
v

j
xk , v

j
yk , w

j
zk , δ

j
k , 1

]T ∣∣∣∣

y j,wz
k ($) =

∣∣∣∣w j
zk+1 − $

[
v j

xk , v j
yk , w j

zk , δ
j
k , 1

]T ∣∣∣∣

and I j
l (x) is the set of indices

I j
l (x) = argmin

{k1, j1},...,{kP , jP }

∑P
i=1

∣∣∣∣x − x ji
ki

∣∣∣∣2
Q

s.t. ki ̸= kn ∀ ji = jn
ki ∈ {1, 2, . . .} ∀i ∈ {1, . . . , P}
ji ∈ {l, . . . , j} ∀i ∈ {1, . . . , P}

where ||y||Q = y⊤Q⊤Qy and the matrix Q is user defined.
For the stored data from iteration l to iteration j , the set I j

l (x)
collects the indices associated with the P-nearest neighbors
to the state x . Finally, the user-defined matrix Q takes into
account the relative scaling of different variables.

Note that the optimizer in (13) can be used to approximate
the evolution of vehicle’s velocities
⎡

⎣
vxk+1

vyk+1

wzk+1

⎤

⎦ =

⎡

⎣
$vx

1:3(x)
$

vy
1:3(x)
$

wz
1:3(x)

⎤

⎦

⎡

⎣
vxk

vyk

wzk

⎤

⎦

+

⎡

⎣
$vx

4 (x) 0
0 $

vy
4 (x)

0 $
wz
4 (x)

⎤

⎦
[

ak
δk

]
+

⎡

⎣
$vx

5 (x)
$

vy
5 (x)
$

wz
5 (x)

⎤

⎦ (14)

where for l = {vx , vy, wz} the scalar $l
i (x) denotes the i th

element of the vector $l (x) and $l
1:3(x) ∈ R3 is a row vector

collecting the first three elements of $l (x) in (13).

C. ATV Model

In this section, we describe the strategy used to build an
ATV model, which is then used for control. At time t of
the j th iteration, we define the candidate solution x̄ j

t =
[x̄ j

t |t , . . . , x̄ j
t+N |t ] to Problem (8) using the optimal solution

at time t − 1 from (9)

x̄ j
k|t =

{
x j,∗

k|t−1, If k ∈ {t, . . . , t + N − 1}
z j

t , If k = t + N
.

Finally at each time t of iteration j , the above candidate
solution is used to build the following ATV model:

x j
k+1|t = A j

k|t x j
k|t + B j

k|t u
j
k|t + C j

k|t (15)

where x j
k|t = [v j

xk|t , v
j
yk|t , w

j
yk|t , e j

ψk|t , s j
k|t , e j

yk|t ] and the matri-

ces A j
k|t , B j

k|t , and C j
k|t are obtained linearizing (12) around

x̄ j
k|t and evaluating (14) at x̄ j

k|t

A j
k|t =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

$vx
1:3

(
x̄ j

k|t
)

0 0 0

$
vy
1:3

(
x̄ j

k|t
)

0 0 0

$
wz
1:3

(
x̄ j

k|t
)

0 0 0
(∇x feψ (x)|x̄ j

k|t

)⊤
(
∇x fs(x)|x̄ j

k|t

)⊤
(
∇x fey (x)|x̄ j

k|t

)⊤

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B j
k|t =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

$vx
4

(
x̄ j

k|t
)

0

0 $
vy
4

(
x̄ j

k|t
)

0 $
wz
4

(
x̄ j

k|t
)

0 0
0 0
0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(16)
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and

Ck =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

$vx
5

(
x̄ j

k|t
)

$
vy
5

(
x̄ j

k|t
)

$
wz
5

(
x̄ j

k|t
)

fey

(
x̄ j

k|t
) − (∇x fey (x)|x̄ j

k|t

)⊤ x̄ j
k|t

fs
(
x̄ j

k|t ) −
(
∇x fs(x)|x̄ j

k|t

)⊤ x̄ j
k|t

feψ
(
x̄ j

k|t ) −
(
∇x feψ (x)|x̄ j

k|t

)⊤ x̄ j
k|t

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

V. RESULTS

The proposed control strategy has been implemented on
a 1/10-scale open-source vehicle platform called BARC 2.
The vehicle is equipped with a set of sensors, actuators,
and two onboard CPUs to perform low-level control of the
actuators as well as communication with a laptop, on which the
high-level control is implemented. The CPUs are an Arduino
Nano for low-level control of the actuators and an Odroid
XU4 for WiFi communication with the i7 MSI GT72 laptop.
The actuators are an electrical motor and a servo for the
steering. The control architecture has been implemented in
the Robot Operating System (ROS) framework, using Python
and operator splitting solver for quadratic programs (OSQP)
[24]. The code is available online3.

We initialize the algorithm performing two laps of path
following at constant speed. Each j th iteration collects the
data of two consecutive laps. Therefore, the local safe set and
local Q-function are defined also beyond the finish line. This
strategy allows us to implement the LMPC for the repetitive
autonomous racing control task, as shown in [19]. At each j th
lap, we use the LMPC (8) and (11) to drive the vehicle from
the starting line to the finish line and we use the closed-loop
data to update the controller for the next lap. The parameters
which define the controller are reported in Table I. We also
added a small input rate cost in order to guarantee a unique
solution to the QP associated with the LMPC.

We tested the controller on an oval-shaped and L-shaped
tracks on which the vehicle runs in the counterclockwise direc-
tion. Fig. 2 shows that the lap time decreases until convergence
is reached after 29 laps. Furthermore, Fig. 3 shows the raw
acceleration measurements from the inertial measurement unit
(IMU). We confirm that controller is able to operate the vehicle
at the limit of its handling capability, reaching a maximum
lateral acceleration close to 1 g4. Fig. 4 shows the evolution
of the closed-loop trajectory on the xy plane and the velocity
profile which is color coded. In the first row, we reported
the path following trajectory used to initialize the LMPC
and the closed-loop trajectories at laps 7 and 15. We note
that the controller deviates from the initial feasible trajectory
(reported in blue as the vehicle speed is 1.2 m/s) in order to

2A video of the experiment can be found at https://youtu.be/ZBFJWtIbtMo
3The code is available on the BARC GitHub repository in the

“devel-ugo” branch https://github.com/MPC-Berkeley/barc/tree/devel-ugo
(github.com/MPC-Berkeley/barc)

4The maximum allowed lateral acceleration is computed assuming that the
aerodynamic effects are negligible and that the lateral force acting on the
vehicle is F = µmg for the friction coefficient µ = 1.

Fig. 2. Lap time of the LMPC on the oval-shaped and L-shaped tracks.

TABLE I

PARAMETERS USED IN THE CONTROLLER DESIGN

Fig. 3. Recorded lateral acceleration of the vehicle running on the oval-
shaped track (top row) and L-shaped track (bottom row).

explore the state space and to drive the vehicle at higher speeds
until it converges to a steady-state behavior. The steady-state
trajectories from laps 30 to 34 are reported in the bottom row
of Fig. 4. Note that the color bar representing the velocity
profile changed from the first to second row as the vehicle
runs at a higher speed at the end of the learning process.
We underline that the controller understands the benefit of
breaking right before entering the curve and of accelerating
when exiting. This behavior is optimal in racing as shown
in [25].
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Fig. 4. First row in Fig. 3 shows the closed-loop trajectory that is used to initialize the LMPC and the closed-loop trajectories after few laps of learning.
The second row shows the steady-state trajectories at which the LMPC has converged. Note that the scale of the color bar changes from the first to the second
row, as the vehicle runs at higher speed after the learning process has converged.

Fig. 5. Data points used in the LMPC design at each lap.

Furthermore, Fig. 5 shows the data points used to design
the LMPC. Recall from Table I that at the j th lap the LMPC
policy is synthesized using the trajectories from lap l = j − 2
to lap j − 1. Therefore, as the controller drives faster on
the track, less data points are needed to design the LMPC.
Moreover, in Fig. 6 we reported the computational time. It is
interesting to note that on average the FTOCP (8) is solved in
less than 10 ms, whereas it took 90 ms to solve the FTOCP
associated with [19]. We underline that both strategies have
been tested with a prediction horizon of N = 12 and a
sampling time of 10 Hz. Therefore, this comparison shows

Fig. 6. The first rows shows the computational cost associated with the
FTOCP. In the second row we reported the computational cost associated
with the system identification strategy.

the advantage of using the local convex safe set in (6),
instead of the polynomial approximation to the safe set used
in [20] and [21]. For more details on the polynomial approxi-
mation to the safe set, we refer to [20]. Finally, we note that it
would be possible to parallelize the computation of the N − 1
linear models which define the ATV model from (15). Indeed,
at time t (16) and (17) may be evaluated independently and
in parallel for each predicted time k.
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VI. CONCLUSION

We presented an LMPC for autonomous racing. The pro-
posed control framework uses historical data to construct safe
sets and approximations to the value function. These quantities
are systematically updated when a lap is completed, and as
a result, the LMPC learns from experience to safely drive
the vehicle at the limit of handling. We demonstrated the
effectiveness of the proposed strategy on the BARC platform.
Experimental results show that the controller learns to drive
the vehicle aggressively, in order to minimize the lap time.
In particular, the closed-loop system converged to a steady-
state trajectory which cuts curves and reaches a lateral accel-
eration close to 1g.
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